2,2'-Bipyridyl fluoro complexes of tungsten(VI): preparation, characterization and crystal structure of $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ and $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$; preparation and characterization of $WF_6 \cdot bipy$

L. Arnaudet, R. Bougon^{*}, Buu Ban, M. Lance, A. Navaza[†], M. Nierlich and J. Vigner SCM, URA CNRS 331, CEA, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette (France)

(Received November 24, 1992; accepted April 8, 1993)

Abstract

The complex $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ has been obtained by the reaction of excess WF₆ with 2,2'-bipyridyl (bipy) in acetonitrile solution, and the complex $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$ resulted from treatment of $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ with CH₃CN. The adduct WF₆ · bipy, obtained from the reaction of WF₆ with bipy in a 1:1 molar ratio in CH₂Cl₂ or CH₃CN solution, is not moisture-sensitive at ambient temperature and is almost insoluble in the usual organic solvents. It was characterized by elemental analysis, X-ray powder data and infrared spectroscopy. In contrast to WF₆ · bipy, the two ionic complexes are very moisture-sensitive. They were characterized by elemental analysis, X-ray powder data, vibrational spectroscopy and ¹⁹F, ¹³C and ¹H NMR spectroscopy in CD₃CN solution.

The crystal structures of $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ and $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$ have been determined from X-ray diffraction data. For both ionic complexes, the coordination polyhedron of the tungsten atom in the cation is a triangular dodecahedron and in the $[WF_7]^-$ anion is a distorted monocapped trigonal prism. The fluorine atoms of the WF₆ molecule in $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ form a slightly elongated octahedron. In $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$, the WF₆ molecules are replaced by CH₃CN molecules although the crystal packing is virtually the same in the two complexes.

Introduction

The cation bis(2,2'-bipyridyl)tetrafluorotungsten(VI), $[WF_4(bipy)_2]^{2+}$, has been recently characterized [1] in the 2,2'-bipyridyl (bipy) fluoro complex of tungsten(VI): $[WF_4(bipy)_2]^{2+} \cdot 2[W_2O_2F_9]^- \cdot 0.25HF$ obtained by the controlled hydrolysis of a mixture of tungsten hexa-fluoride (WF₆) and bipy in CD₂Cl₂ solution. It was then realized that, provided any source of hydrolysis was strictly avoided, a similar salt containing the tungsten(VI) heptafluoroanion $[WF_7]^-$ instead of the dimetallic anion $[W_2O_2F_9]^-$ should be capable of preparation. As the structure of the $[WF_7]^-$ anion was still unknown, a crystal structure determination of the expected tungsten(VI) fluoro derivative was also of great interest.

Experimental

The experimental procedures, materials, apparatus and instrumentation were as previously described [2, 3]. The NMR spectra were recorded on a Bruker model AC 200 spectrometer at 200.13, 188.3 and 50.32 MHz for ¹H, ¹⁹F and ¹³C nuclei, respectively. Samples were referenced externally with respect to Si(CH₃)₄ or CFCl₃ with positive shifts being downfield from the standards. The 647.1 nm exciting line of a Kr ion model 2016 Spectra Physics laser was used to record the Raman spectra.

The complex $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ (1) was prepared from the reaction of 1.71 mmol of bipy in 3 cm³ of CH₃CN into which 8.55 mmol of WF₆ was added by condensation at -196 °C. A deep-orange coloured solution with an orange precipitate resulted from warming the mixture to ambient temperature. More CH₃CN was then added until all the precipitate had dissolved. The glass reaction tube was then sealed under vacuum with the solution kept at -196 °C, allowed to warm up to ambient temperature and then placed in a freezer at -10 °C. After 48 h storage, a large amount of

^{*}Author to whom correspondence should be addressed.

[†]Teaching member of the Centre Pharmaceutique, Chatenay Malabry, France.

^{0022-1139/94/\$07.00 © 1994} Elsevier Sequoia. All rights reserved SSDI 0022-1139(93)02926-6

orange-yellow crystals had formed. These crystals were separated from the solution by decantation and dried by condensation of the volatiles in the side-arm of the reaction tube maintained at -196 °C. Analysis: Calc. for W₂F₁₂·C₁₀H₈N₂: W, 48.90; F, 30.32; C, 15.97; H, 1.07; N, 3.72%. Found: W, 48.72; F, 30.07; C, 16.10; H, 1.15; N, 3.85%.

The complex $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$ (2) was prepared by slow evaporation under vacuum of an acetonitrile solution of 1. The solution was kept at ambient temperature and the volatiles condensed at -10 °C. A red-orange crystalline residue was obtained. Analysis: Calc. for $W_3F_{18} \cdot (C_{10}H_8N_2)_2 \cdot CH_3CN$: W, 44.23; F, 27.42; C, 21.19; H, 1.53; N, 5.62%. Found: W, 43.23; F, 29.21; C, 20.82; H, 1.43; N, 5.05%. The departure from ideal composition is thought to be mainly due to the retention of HF (formed through secondary reactions) by the microcrystalline part of the product.

The adduct $WF_6 \cdot bipy$ was prepared from the reaction of WF_6 (typically 1–2 mmol) and bipy in a 1:1 molar ratio either in CH_3CN or CH_2Cl_2 . A pale yellow powder was obtained. Analysis: Calc. for $WF_6 \cdot C_{10}H_8N_2$: W, 40.49; F, 25.11; C, 26.45; H, 1.78; N, 6.17%. Found: W, 40.25; F, 24.93; C, 26.61; H, 1.82; N, 6.27%. This adduct, which like $WOF_4 \cdot bipy$ [2] is not moisturesensitive at ambient temperature, is also virtually insoluble in the usual compatible solvents and could not be sublimed. Consequently, single crystals for X-ray diffraction studies could not be grown. The X-ray powder data for this adduct are given in Table 1 together with those of 1 and 2.

TABLE 1. X-Ray powder diffraction data for $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6(1)$, $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$ (2) and $WF_6 \cdot bipy$

Compou	nd 1			Compou	nd 2			WF ₆ · bip	y
d (Å)	<u> </u>	Intens. ^a	hkl	d (Å)		Intens. ^a	h kl	d (Å)	Intens. ^a
Obs.	Calc.			Obs.	Calc.				
7.07	7.114	S	004	9.82	9.911	ms	1 0 0	6.80	ms
	7.052		103	7.52	7.487	vvw	-1 - 1 1	6.10	vs
6.55	6.604	vvw	112	7.07	7.051	vs	1 0 1	5.90	s
5.24	5.272	vs	200	6.86	6.859	vs	0 - 1 2	5.40	ms
4.98	5.008	m	105	6.46	6.482	w	-1 - 12	4.44	ms
	4.943		202	5.25	5.255	S	-2 0 1	4.21	S
4.67	4.652	vvw	211	5.00	5.000	mw	-1 - 1 3	3.90	vvw
4.217	4.235	S	204	4.87	4.864	mw	0 - 1 3	3.782	mw
	4.222		213	4.62	4.628	mw	-2 10	3.616	m
3.992	4.001	m	116		4.627		-2 - 1 2	3.392	ms
3.705	3.728	ms	220		4.624		1 -2 1	3.299	mw
3.601	3.631	ms	215		4.624		-2 11	3.184	w
	3.606		222	4.308	4.306	ms	1 2 0	3.076	vvw
3.293	3.302	m	224	4.148	4.149	ms	-1 -23	2.928	w, br
	3.296		303		4.149		-2 -1 3	2.692	mw, br
3.076	3.079	w	217	4.027	4.037	w	1 1 2	2.634	w
2.976	3.019	vvw	314	3.966	3.968	vvw	-1 13	2.576	w
	2.990		305	3.705	3.706	S	-1 04	2.486	mw, br
2.720	2.728	m	316		3.700	w	1 2 1		,
2.653	2.659	ms	307	3.559	3.558	vw	1 - 2 3		
	2.658		1 1 10	3.336	3.335	w	1 - 3 1		
2.459	2.472	w	404	3.241	3.241	w	-2 - 2 4		
	2.469		413	2.976		w			
	2.448		332	2.891		vvw			
2 354	2.358	w. br	240	2.820		vvw			
2010-01-1	2.351	,	309	2.753		w			
2.228	2.238	s	244	2.634		mw			
2.200	2.201	vvw	336	2.597		nw			
2.159	2.163	m	2 0 12	2.469		vw			
2.047	2.046	vw	152	2.440		vw			
1.971	1.977	w	3 4 5	2.336		mw			
1.890	1.896	vw	2 0 14	2.200		mw			
1.07 0	1 895	• • •	156	2 111		mw			
1.864	1.867	m	1 0 15						

*Abbreviations used: br, broad; v, very; s, strong; m, medium; w, weak.

	TABLE 2. Crystallographic data 1	or $[WF_4(bipy)_2]^{2+} \cdot 2[WF_2]^-$ (1) a	nd $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^{-} \cdot CH_3CN$ (2)
--	----------------------------------	--	---

	Compound 1		Compound 2
Crystal data			
Formula	$C_{10}H_8F_{12}N_2W_2$		$C_{22}H_{19}F_{18}N_5W_3$
Formula weight	751.87		1246.95
Crystal size (mm)	$0.20 \times 0.15 \times 0.15$		$0.25 \times 0.20 \times 0.15$
Crystal colour	orange-yellow		red-orange
Crystal system	tetragonal		triclinic
Space group	$I4_1/a$ (No. 88)		P1 (No. 2)
a (Å)	10.544(5)		10.523(4)
b (Å)	10.544(5)		10.590(3)
c (Å)	28.455(16)		15.591(4)
α (°)	90		107.85(3)
β(°)	90		108.73(3)
γ (°)	90		89.38(3)
V (Å ³)	3164(2)		1559(2)
Z	4		2
$d(\text{calc.}) (\text{g cm}^{-3})$	3.16		- 2.66
μ (Mo K α) (cm ⁻¹)	149.78		114.13
Data collection			
Diffractometer		CAD 4 Enraf Nonius	
Monochromator		graphite	
Radiation		Mo K α ($\lambda = 0.71073$ Å)	
T (K)		293	
θ limits (°)		1,20	
Scan type		$\omega/2\theta$	
Scan width		$0.8 + 0.35 \tan \theta$	
Range (abs. transm.)	0.86, 1.11		0.80, 1.24
Range h	-12, 0		0, 10
k	0, 12		-10, 10
l	0, 33		-15, 15
Reflections collected			
total	1595		3112
unique	1392		2680
kept for refinement $(I > 3\sigma(I))$	509		1213
Number of parameters varied	68		194
Minimized function		$\Sigma w[F_0 - F_c]^2$	
Weighting scheme		unit weight for an reflections	
weighting scheme $D(E) = \sum_{i=1}^{N} E_i E_i S_i E_i $	0.040		0.047
$N(T) = 4 F_0 = F_c /4 F_0 $ $P_c(T) = T_{c_1} F_1 = F_1 ^2 T_{c_1} F_1 ^2 T_2 ^{1/2}$	0.049		0.047
$\pi_{w}(r) = [2w[r_{0} - r_{c}]^{7/2}w[r_{0}]^{5/2}$	0.000	Micrower II	0.054
Computing programs		SHELXS86 [6] SDP [7]	

Crystals of 1 and 2 suitable for structure determination were selected in the dry box, coated with Kel-F oil and sealed inside glass capillaries 0.5 mm in diameter.

The cell parameters were determined by least-squares refinement of the setting angles of 25 randomly selected reflections with θ between 8 and 12°. Three standard reflections were measured each hour to monitor the crystal decay (14.6% in 11.4 h for 1 and 35% in 31.6 h for 2) with a linear correction being made. The data were corrected for Lorentz polarization effects and absorption using empirical corrections [4, 5]. A summary of the X-ray data collection parameters and structural refinement is given in Table 2. The initial position of the W atoms of both complexes was determined from the Patterson function. The position of the atoms of bipy and the F atoms was obtained from a subsequent difference Fourier map phased with the refined position and isotropic thermal parameters of the W atoms. For 1 twelve peaks were found around the W(3) atom, and these peaks were ascribed to the F atoms of a 'WF₇' entity disordered with respect to the positions of the fluorine atoms, with occupation factors of 1 for F(31), and 0.5 for F(32), F(33), F(34), F(35) and F(36). The last difference maps for 2 revealed a disordered electron density, which was interpreted as due to CH₃CN molecules. The atoms of these molecules, with positional parameters fixed to observed positions, were introduced in the calculation with an occupation factor of 0.5 and an isotropic thermal factor fixed to B=8 Å². Hydrogen atoms were not located on the difference maps. Their

TABLE 3. Positional parameters and their estimated standard deviations

	the second se			
Atom	x	у	z	B (Å ²) ^a
[WF₄(bip	$(y)_2 J^{2+} \cdot 2 [WF_7]^{-1}$	$\cdot WF_6$ (1)		
W(1)	0.000	0.000	0.000	2.11(3)
W(2)	0.000	0.000	0.500	6.76(8)
W(3)	0.000	0.000	0.30199(8)	3.77(5)
F(10)	0.124(2)	-0.110(2)	0.0205(6)	2.6(4)*
F(21)	-0.113(5)	0.127(5)	0.502(2)	16(1)*
F(22)	0.000	0.000	0.564(3)	21(3)*
F(31)	0.033(3)	-0.152(3)	0.331(1)	7.4(8)*
F(32)	-0.139(5)	-0.018(5)	0.343(2)	6(1)*
F(33)	-0.085(5)	-0.116(5)	0.262(2)	6(1)*
F(34)	0.036(5)	-0.106(5)	0.254(2)	6(1)*
F(35)	-0.131(9)	0.069(8)	0.265(3)	14(3)*
F(36)	0.169(7)	0.033(7)	0.306(2)	9(2)*
N(10)	0.081(3)	0.095(3)	0.0638(9)	2.1(5)*
C(11)	0.167(4)	0.200(4)	0.062(1)	3.2(8)*
C(12)	0.213(4)	0.255(4)	0.102(2)	4.6(9)*
C(13)	0.181(4)	0.205(4)	0.146(2)	5(1)*
C(14)	0.100(4)	0.101(4)	0.151(2)	4.0(8)*
C(15)	0.046(4)	0.052(4)	0.106(1)	3.5(8)*
[WF₄(bip	$(y)_2 J^{2+} \cdot 2 [WF_7]^{-1}$	$\cdot CH_{3}CN$ (2)		
W(1)	0.1301(2)	0.3983(2)	0.2462(1)	2.52(3)
W(2)	0.5553(2)	0.2460(2)	0.1507(1)	5.40(6)
W(3)	0.1894(3)	0.9358(2)	0.3663(1)	5.79(6)
F(11)	-0.011(2)	0.492(2)	0.201(1)	2.4(4)*
F(12)	0.239(2)	0.268(2)	0.208(1)	3.7(5)*
F(13)	0.261(2)	0.542(2)	0.299(1)	2.6(4)*
F(14)	0.031(2)	0.288(2)	0.279(1)	3.6(5)*
F(21)	0.605(4)	0.270(4)	0.060(3)	12(1)*
F(22)	0.580(4)	0.239(4)	0.278(3)	13(1)*
F(23)	0.435(4)	0.119(4)	0.155(3)	13(1)*
F(24)	0.388(4)	0.237(4)	0.066(3)	12(1)*
F(25)	0.501(3)	0.397(3)	0.215(2)	8.9(9)*
F(26)	0.727(4)	0.352(3)	0.224(2)	11(1)*
F(27)	0.644(3)	0.095(3)	0.131(2)	9.5(9)*
F(31)	0.023(4)	0.946(4)	0.393(3)	14(1)*
F(32)	0.297(5)	0.879(4)	0.300(3)	15.0*
F(33)	0.348(5)	1.012(5)	0.451(4)	18.0*
F(34)	0.199(4)	1.103(4)	0.437(3)	14(1)*
F(35)	0.110(5)	1.018(5)	0.279(3)	16(2)*
F(36)	0.094(3)	0.790(3)	0.267(2)	8.3(8)*
F(37)	0.239(3)	0.816(3)	0.433(2)	10(1)*
N(1)	0.171(3)	0.436(3)	0.120(2)	3.0(7)*
N(2)	0.001(3)	0.254(3)	0.107(2)	4.0(8)*
N(3)	0.082(3)	0.528(3)	0.372(2)	3.0(7)*
N(4)	0.275(3)	0.372(3)	0.378(2)	3.8(7)*
C(11)	0.256(4)	0.544(4)	0.135(3)	4(1)*
C(12)	0.287(4)	0.565(4)	0.057(3)	5(1)*
C(13)	0.230(4)	0.471(4)	-0.028(3)	5(1)*
C(14)	0.146(4)	0.370(4)	-0.046(3)	5(1)*
C(15)	0.110(4)	0.359(4)	0.034(2)	3.4(9)*
C(21)	0.011(4)	0.253(4)	0.021(2)	3.6(9)*
C(22)	-0.063(4)	0.165(4)	-0.066(3)	3.8(9)* 4(1)*
C(23)	-0.155(4)	0.0/4(4)	-0.06/(3)	4(1)* 4(1)*
C(24)	-0.170(4)	0.000(4)	0.013(3)	4(1)* 5(1)*
C(23)	-0.095(4)	0.130(4)	0.103(3)	J(1)*
C(31)	U.169(4)	0.541(3)	0.469(2)	2.9(8)*
C(32)	0.143(4)	0.029(4)	0.540(3)	4(1)* 5(1)*
C(33)	0.03/(4)	0.705(4)	0.527(3)	⊃(1) [™]
U(34)	0.048(4)	0.090(4)	0.443(3)	4(1)*

.,	
(contir	wed)

FABLE 3.	(continued)
----------	-------------

Atom	x	у	Z	$B (Å^2)^a$
C(35)	-0.021(4)	0.607(4)	0.367(3)	5(1)*
C(41)	0.368(4)	0.289(4)	0.381(3)	6(1)*
C(42)	0.457(5)	0.276(4)	0.462(3)	6(1)*
C(43)	0.443(5)	0.355(4)	0.546(3)	6(1)*
C(44)	0.351(4)	0.442(4)	0.555(3)	4(1)*
C(45)	0.273(4)	0.453(4)	0.465(3)	5(1)*
N(100)	0.340	0.010	0.750	8.0
N(200)	0.359	0.332	0.791	8.0
C(100)	0.389	0.109	0.729	8.0
C(101)	0.473	0.195	0.730	8.0
C(200)	0.330	0.240	0.750	8.0
C(201)	0.332	0.082	0.688	8.0

^aStarred atoms were refined isotropically. For anisotropically refined atoms, $B = \frac{4}{3} \Sigma_i \Sigma_j \beta_{ij} \vec{a}_i \vec{a}_j$.

theoretical positions were included for the factor structure calculation only for 2. For both complexes, the W atoms were refined anisotropically and the other atoms isotropically. For both complexes, there was only one residual peak of 1.7 e Å⁻³ on the final difference map and the absolute value of the other was found to be smaller than 1e Å⁻³. These residual peaks are in the regions close to the atoms with higher thermal parameters. The atomic scattering factors and anomalous dispersion terms for W^{VI} were taken from the *International Tables for X-ray Crystallography* [8].

Results and discussion

Syntheses

The reaction of WF_6 with bipy in a 1:1 molar ratio achieved either in CH_3CN or CH_2Cl_2 led solely to the insoluble adduct WF_6 bipy. With a WF_6 /bipy ratio greater than 1:1 and lower than 3:1, a mixture of WF_6 bipy and 1 was obtained in CH_3CN solution, and with higher ratios only 1 was obtained. In CH_2Cl_2 solution, 1 could not be obtained without WF_6 bipy. The solvent CH_3CN obviously favours the formation of the ionic derivative through F^- ion exchange (see below). It is worth pointing out that no reaction was observed at ambient temperature in the absence of solvent. The properties of WF_6 bipy closely resemble those of WOF_4 bipy [2], and great similarities were also found between the infrared spectra of the two adducts.

The mechanism through which excess WF_6 leads to the formation of the ionic complexes 1 and 2 may be written as follows:

$$WF_6 + bipy \longrightarrow WF_6 \cdot bipy$$
 (1)

TABLE 4. Selected bond lengths (Å) and angles (°) for $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ (1)

Bond	Length	Bond	Length	Bond	Length
W(1)-F(10)	1.836(4)	W(3)-F(31)	1.832(8)	N(10)-C(11)	1.41(1)
W(1) - N(10)	2.263(7)	W(3) - F(32)	1.88(1)	N(10) - C(15)	1.34(1)
W(2) - F(21)	1.77(1)	W(3) - F(33)	1.89(2)	C(11) - C(12)	1.41(1)
W(2) - F(22)	1.87(2)	W(3) - F(34)	1.80(2)	C(12) - C(13)	1.35(1)
		W(3)-F(35)	1.88(3)	C(13) - C(14)	1.43(1)
		W(3)-F(36)	1.77(2)	C(14) - C(15)	1.45(1)
				C(15)-C(15)	1.48(2)
Bonds	Angle	Bonds	Angle	Bonds	Angle
F(10) - W(1) - N(10)	75.3(2)	$F(21) - W(2) - F(21)^{iv}$	90.13(5)	$F(31)^{i} - W(3) - F(31)$	124.9(5)
$F(10) - W(1) - N(10)^{i}$	73.9(2)	F(21) - W(2) - F(22)	87.2(5)	F(31) - W(3) - F(32)	77.9(5)
$F(10) - W(1) - N(10)^{ii}$	144.3(2)	$F(21) - W(2) - F(22)^{iv}$	92.8(5)	$F(31)^{i} - W(3) - F(32)$	69.2(5)
$F(10) - W(1) - N(10)^{iii}$	73.7(2)	$F(21) - W(2) - F(21)^{i}$	174(1)	$F(31)^{i} - W(3) - F(33)$	138.9(5)
$F(10) - W(1) - F(10)^{i}$	142.1(3)			F(31) - W(3) - F(33)	79.9(5)
$F(10) - W(1) - F(10)^{ii}$	96.07(9)			F(31) - W(3) - F(34)	76.7(6)
$F(10) - W(1) - F(10)^{iii}$	96.07(9)			$F(31)^{i}-W(3)-F(34)$	157.8(6)
$N(10) - W(1) - N(10)^{i}$	70.7(3)			F(31) - W(3) - F(35)	134.9(8)
$N(10) - W(1) - N(10)^{ii}$	131.7(2)			$F(31)^{i} - W(3) - F(35)$	80.7(7)
$N(10) - W(1) - N(10)^{iii}$	131.7(2)			F(31) - W(3) - F(36)	89.7(7)
				$F(31)^{i} - W(3) - F(36)$	87.3(7)
C(11) - N(10) - C(15)	120.6(8)			F(32) - W(3) - F(34)	126.0(7)
N(10) - C(11) - C(12)	117.4(9)			F(32) - W(3) - F(35)	79.3(9)
C(11) - C(12) - C(13)	121(1)			F(32) - W(3) - F(36)	138.4(9)
C(12) - C(13) - C(14)	125(1)			F(32) - W(3) - F(33)	88.4(6)
C(13) - C(14) - C(15)	112(1)			F(32) - W(3) - F(34)	126.0(7)
N(10) - C(15) - C(14)	124.5(8)			F(32) - W(3) - F(35)	79.3(9)
$N(10) - C(15) - C(15)^{i}$	115.0(5)			F(32) - W(3) - F(36)	138(1)
$C(14) - C(15) - C(15)^{i}$	120.5(6)			F(33) - W(3) - F(34)	40.7(5)
				F(33) - W(3) - F(35)	61.0(8)
				F(33) - W(3) - F(36)	128.7(7)
				F(34) - W(3) - F(35)	86.3(8)
				F(34) - W(3) - F(36)	88.1(7)
				F(35) - W(3) - F(36)	132(1)

Symmetry codes: (i) \bar{x} , \bar{y} , z; (ii) \bar{y} , x, \bar{z} (iii) y, \bar{x} , \bar{z} ; (iv) \bar{y} , x, $\bar{z}+1$.

$$2WF_{6} \cdot bipy + WF_{6} \longrightarrow$$

$$[WF_{4}(bipy)_{2}]^{2+} + 2[WF_{7}]^{-} \qquad (2)$$

$$[WF_{4}(bipy)_{2}]^{2+} + 2[WF_{7}]^{-} + WF_{6} \longrightarrow$$

$$1_{\text{cryst.}} \xrightarrow{-\text{WF6}} 2_{\text{cryst.}}$$
 (3)

The stoichiometry would only require a twofold excess of WF_6 to form 1. However, the conversion yields of reactions (2) and (3) probably depend on the relative amount of WF_6 present.

Crystal structure

Positional and thermal parameters for 1 and 2 are listed in Table 3, and selected bond lengths and angles for 1 are presented in Table 4. Drawings of the structures of the anion and cation in 1 and 2, and of the WF_6 molecule in 1 are shown in Fig. 1. Stereoscopic views

of the unit cell contents of 1 and 2 are shown in Fig. 2.

In 1 and 2, the W atom of the $[WF_4(bipy)_2]^{2+}$ cation is coordinated by the N atoms of two bipy units and four F atoms forming a triangular dodecahedron [see Fig. 1(a)] with the ranges of bond distances (in Å) being: W-N, 2.23(1)-2.29(1), and W-F, 1.836(4)-1.867(9). This arrangement is the same as that found for this cation in $[WF_4(bipy)_2]^{2+} \cdot 2[W_2O_2F_9]^{-}$ 0.25HF [1]. The coordination polyhedron of the $[WF_7]^$ anion is a distorted monocapped trigonal prism [see Fig. 1(b)] with the range of bond distances (in Å) being: W-F, 1.75(2)–1.92(2). The determination of the structure of this anion in 2 was the key to the interpretation of its disordered structure in 1. The F atoms of the WF_6 molecule in 1 form a slightly elongated octahedron with one long F-W-F axis [3.74 (4) Å] and two short F-W-F axes [3.54 (2) Å]. The mean W-F distance (1.80 Å) for WF₆ in 1 is in agreement

Fig. 1. ORTEP [12] drawings of (a) the $[WF_4(bipy)_2]^{2+}$ cation, (b) the coordination polyhedron of the $[WF_7]^-$ anion and (c) the WF₆ molecule. Vibration ellipsoids are drawn at the 30% probability level.

with that determined by neutron diffraction for its orthorhombic (1.81 Å) [9] or cubic phase (1.83 Å) [10], as well as with that measured by electron diffraction of the vapour (1.833 Å) [11]. The three different W

Fig. 2. Stereoscopic views of the structure in the unit cells of (a): $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot WF_6$ (1); and (b): $[WF_4(bipy)_2]^{2+} \cdot 2[WF_7]^- \cdot CH_3CN$ (2).

atoms in 1 are in special positions, with W(1) and W(2) lying on the $\bar{4}$ axis and W(3) on the 2 axis. Consequently, the cation, the anion and WF₆ are packed in stacks along the *c* axis. The high-temperature factors of the F atoms suggest that WF₆ is a 'solvating molecule'. This is confirmed by the crystal packing in 2, which is similar to that of 1 with the solvating CH₃CN molecules replacing the WF₆ molecules (see Fig. 2). The most outstanding consequence of this substitution is the loss of the tetragonal symmetry of the crystal. The similarity between the two crystal cells is better observed by comparing the parameters of 2 with those of the primitive cell of 1: (a = 10.54 Å, b = 10.54 Å, c = 15.18 Å, $\alpha = 110.4^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$).

NMR studies

NMR spectra were recorded for solutions of 1 and 2 in CD₃CN. The ¹H and ¹³C NMR data for 1 are listed in Table 5 together with those of bipy. The corresponding data for 2 were found to be identical with those of 1. Because of the presence of 0.4 mol% of non-deuterated species in the acetonitrile- d_3 used, the protons and ¹³C atoms of CH₃CN from 2 could not be distinguished from those of the solvent. As previously observed [1], the protons of the

TABLE 5. ¹H and ¹³C NMR data^a for solutions of [WF₄(bipy)₂]²⁺·2[WF₇]⁻·WF₆ (1) in CD₃CN. Comparison with those of bipy

۱H	Chemica	l shifts				Coupling	g constants					Spectrum
		δ_3	δ_4	δ_5	δ_6	J _{3,4}	J _{3,5}	J _{3,6}	J _{4,5}	J _{4,6}	J _{5,6}	
1 bipy		8.95 8.41	8.76 7.87	8.13 7.37	9.57 8.65	7.74 7.96	1.34 1.20	0 1.00	7.52 7.62	1.09 1.83	6.56 4.38	ABXY 1st order
¹³ C	δ_2	δ_3	δ_4	δ_5	δ_6	$\mathbf{J}_{\mathrm{C(3)H(3)}}$	$J_{{ m C}(4){ m H}(4)}$	$J_{C(5)H(5)}$	$J_{C(6)H(6)}$			
1 bipy	152.10 156.88	127.82 138.01	146.96 124.90	130.36 121.54	147 150.19	172 163	172 163	178 165	172 180			

^aChemical shifts δ in ppm from TMS and coupling constants J in Hz; subscripts 3, 4, 5 and 6 refer to hydrogen and carbon atom positions, with 3 indicating the position adjacent to the C-C bond of the two pyridyl rings, and 6, 5, 4 the *ortho, meta* and *para* position to the nitrogen atom, respectively; subscript 2 refers to the carbon atoms bonding the two pyridyl rings.

 $[WF_4(bipy)_2]^{2+}$ cation are deshielded in comparison to those of bipy. The ¹⁹F NMR spectra of solutions of 1 in CD₃CN at 263 K showed lines at ϕ 167.0, 153.2 and 144.4 ppm, which were assigned to WF₆ [13], $[WF_4(bipy)_2]^{2+}$ [1] and $[WF_7]^-$ [14, 15], respectively. Owing to the exchange of F⁻ anions, which takes place between WF₆ and $[WF_7]^-$ in acetonitrile [14, 15], only one broad line was observed at ϕ 144.4 ppm for these two species at ambient temperature. Apart from the absence of the WF₆ line, the ¹⁹F NMR spectra of 2 were found to be identical with those of 1.

Vibrational spectra

Infrared and Raman data for 1 are summarized in Table 6. Only infrared spectra could be obtained for 2 and WF_6 bipy. The relevant data are also shown in Table 6. Apart from the bands due to CH₃CN, the infrared spectrum of 2 is very close to that of 1. The positions of the bands for CH₃CN also indicate that this molecule is not coordinated in the complex, since for a coordinated molecule the bands assigned to the C-C=N skeletal modes ν_2 (A₁) (2251 cm⁻¹) and ν_4 (A_1) (919 cm⁻¹) should appear at higher frequency than in the free molecule [16, 17]. For both complexes, several bands of the ligand bipy are shifted to higher frequencies when compared with those of its free form. These shifts are quite similar to those observed for the adducts WOF_4 bipy and WO_2F_2 bipy, and the relevant discussion already presented [2] is also valid here. As far as the vibrations associated with the W and F atoms are concerned, the intense Raman lines at 772 and 707 cm⁻¹ are assigned to WF₆ (ν_1) [18] and [WF₇]⁻ [14, 19], respectively. The two other intense Raman lines located in this region at 678 and 645 cm⁻¹ are assigned to the symmetric W-F stretching vibrations of $[WF_4(bipy)_2]^{2+}$. The high intensity of the line at 678 cm^{-1} is explained by a contribution of the vibration (ν_2) of WF₆ [18] to this line.

Conclusions

This study has permitted a thorough characterization of the WF₆/bipy interaction. When the reaction is carried out using a 1:1 molar ratio of the reactants, the molecular adduct WF₆ · bipy is obtained, whereas with an excess of WF₆ the bis(2,2'-bipyridyl)tetrafluorotungsten(VI) cation, [WF₄(bipy)₂]²⁺, and the heptafluorotungstate(VI) anion, [WF₇]⁻, are formed. Depending on the relative concentration of WF₆ and 1 in CH₃CN, either 1 or 2 crystallizes. The molecules CH₃CN and WF₆ are present in the complexes as solvating species. The determination of the crystal structure of these complexes has shown that the coordination of the tungsten atom in the [WF₇]⁻ ion is a distorted monocapped trigonal prism.

Taking only the electrostatic ligand repulsions into account, three most energetically favourable coordination geometrics of the central atom are calculated for an AB₇-type species [20] (*i:j:k* = ligand arrangement): the pentagonal bipyramid (1:5:1), the capped octahedron (1:3:3) and the capped trigonal prism (1:4:2). Among the fluorides, only the ions $[NbF_7]^{2-}$ and $[TaF_7]^{2-}$ [21, 22] had been previously found to be close to the 1:4:2 type. By analogy between the pairs of elements Nb/Mo and Ta/W, it may be inferred that this coordination geometry of the central atom is also that of the $[MoF_7]^{-}$ ion.

Supplementary material

Tables of bond distances and bond angles, calculated positional parameters of H atoms for 2, and tables of observed and calculated structure factors, root-mean square amplitudes of thermal vibration, anisotropy thermal parameters for 1 and 2 are available from the authors on request.

Infrared				Raman ^b		Infrared				Raman ^b	
bipy [£]	WF ₆ · bipy	1	2	bípy ^c	1 ^d	bipy ^c	$WF_6 \cdot bipy$	1	7	bipy ^e	1
3090 mw	3147 ms 3120 mw	3150 ms 3100 ms	3210 mw 3148 ms 3100 ms	3140 (1) 3116 (1) 3082 (3)		1215 mw 1170 w 1142 m	1226 ms 1176 m 1157 ms	1215 sh 1185 ms 1175 ms 1135 m	1220 sh 1187 ms 1175 ms 1135 m	1216 (12) 1145 (2)	1173 (5)
3060 mw		3050 sh	3048 sh	3073 (7) 3064 (11) 3045 (6)		1090 ms 1065 m	1130 m 1112 m 1079 m	1120 ms 1094 m	1117 ms 1093 m	1091 (3)	1094 (23) 1066 (3)
3010 w	0700			3028 (2) 3006 (3)		1043 ms	1037 ms	1028 s	1048 sh 1030 ms	1043 (15)	$1048 (7) \\ 1029 (81)$
2295 w	2940 W	2300 w 2270 w 2253 w	2290 mw 2290 mw 2251* ms 2030 mw			996 m 975 sh	1024 m 987 mw 972 mw 927 mw	975 sh	919* mw	995 (97)	
1990 w 1965 mw 1895 mw	1982 w 1957 w		1990 w 1960 w 1905 w			895 m	s <i>TTT</i> s	900 m 793 sh 775 s	898 m 795 sh 777 s		794 (4) 772 (47)
1870 mw 1803 mw 1715 mw 1695 mw	1872 w	1870 mw	1867 mw	(0) 5231		755 vs 740 m	723 ms	750 w 720 sh 705]	747 w 720 ms 705 w	813 (15) 763 (5)	707 (65) 678 (100)
	1610 s	1610 s	1605 s	1628 (2) 1628 (2) 1612 (3)	1609 (75)	652 ms	647 s 637 m	640 f s, U	640 s, br		645 (47)
1580 s 1557 ms 1529 vw	1575 ms 1537 w	1575 ms 1533 mw	1572 ms	(100) 1572 (80)	1574 (66)	010 ms	582 vs 547 ms 527 sh	575 sh 525 mw	580 sh 523 mw	(27) 710	
1503 w	1512 ms 1479 s	1507 ms 1480 s	1507 ms 1480 s	1480 (41)	1511 (31)	462 w	462 mw	490 mw 472 mw 450 w	480 mw 470 mw 450 w		498 (4)
1453 s 1417 s 1397 sh	1446 s	1455 s 1367 mw	1445 s 1377* mw	1440 (72)	1440 (7.5)	422 w 396 s	425 m 367 mw 350 mw	415 m 395 m 355 m	415 m 395 m 355 mw 330 mw	437 (3)	435 (4) 384 (11) 358 (7) 347 (4)
1306 w	1328 s	1330 s 1295 m	1330 s 1293 m	1300 (43) 1290 sh	1337 (69) 1330 sh 1310 sh 1290 (1)		296 mw	<i>32</i> 5 ms, br 275 w	320 w 295 w 275 w		224 (11) 266 (3) 238 (45) 227 (40)
1270 w 1253 ms	1245 ms	1275 m 1245 ms	1277 m 1240 ms	1235 (48)	1280 (3) 1242 (5)					222 (25)	211 (58) 161 (63)
^a Frequencic Abbreviatio ^b Uncorrecte ^c From ref.	s in cm ⁻¹ . Fre rus used: sh, s ed Raman inte 2. requency Ram	equencies in houlder; br, ensities basec	italic arc those broad; v, very; 1 on relative pe : limited by the	which could be s, strong; m, n aak heights are c low sensitivity	assigned to the redium; w, wea given in parer of the detecte	e inorganic pa ak. ntheses. or at waveleng	urt of the com gths larger th	pounds, and tho: an 7300 Å.	se marked with ai	1 asterisk are di	le to CH ₃ CN.

TABLE 6. Vibrational data^a for $[WF_4(bipy)_2]^{2^+} \cdot 2[WF_7]^- \cdot WF_6$ (1), $[WF_4(bipy)_2]^{2^+} \cdot 2[WF_7]^- \cdot CH_3CN$ (2) and $WF_6 \cdot bipy$. Comparison with those of bipy

L. Arnaudet et al. / 2,2'-Bipyridyl fluoro complexes of tungsten(VI)

References

- L. Arnaudet, R. Bougon, Buu Ban, M. Lance, A. Navaza, M. Nierlich and J. Vigner, J. Fluorine Chem., 59 (1992) 141.
- 2 L. Arnaudet, R. Bougon, Buu Ban, P. Charpin, J. Isabey, M. Lance, M. Nierlich and J. Vigner, *Can. J. Chem.*, 68 (1990) 507.
- 3 L. Arnaudet, R. Bougon, Buu Ban, M. Lance and W.C. Kaska, J. Fluorine Chem., 53 (1991) 171.
- 4 N. Walker and D. Stuart, Acta Crystallogr., A39 (1983) 158.
- 5 A.C.T. North, D.C. Phillips and F.S. Mathews, Acta Crystallogr., A24 (1968) 351.
- 6 G.M. Sheldrick, SHELX S86 Program for the Solution of Structures, University of Göttingen, Germany, 1986.
- 7 B.A. Frenz, Enraf Nonius, Structure Determination Package, SDP-Plus, V.3.0, Enraf Nonius, Delft, The Netherlands, 1985.
- 8 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1974, Vol. IV, Tables 2.2B and 2.3.1.
- 9 J.H. Levy, J.C. Taylor and P.W. Wilson, J. Solid State Chem., 15 (1975) 360.
- 10 J.H. Levy, J.C. Taylor and P.W. Wilson, J. Less-Common Metals, 15 (1976) 155.

- 11 M. Kimura, V. Schonmaker, D.W. Smith and B. Weinstock, J. Chem. Phys., 48 (1968) 4001.
- 12 C.K. Johnson, Ortep II, Report ORNL 5138, Oak Ridge National Laboratory, TN, USA, 1976.
- 13 E.L. Muetterties and W.D. Phillips, J. Am. Chem. Soc., 81 (1959) 1084.
- 14 A. Prescott, D.W.A. Sharp and J.M. Winfield, J. Chem. Soc., Dalton Trans., (1975) 934.
- 15 R. Bougon, P. Charpin, J.P. Desmoulin and J.G. Malm, *Inorg. Chem.*, 15 (1976) 2532.
- 16 J. Reedijk, W.L. Groeneveld, Recl. Trav. Chim. Pays Bas, 86 (1967) 1103.
- 17 K.F. Purcell, J. Am. Chem. Soc., 89 (1967) 247.
- 18 E.R. Bernstein and G.R. Meredith, Chem. Phys., 24 (1977) 289.
- 19 A. Beuter, W. Kuhlmann and W. Sawodny, J. Fluorine Chem., 6 (1975) 367.
- 20 D.L. Kepert, Inorganic Stereochemistry, Springer-Verlag, Berlin, 1982, p. 117.
- 21 J.L. Hoard, J. Am. Chem. Soc., 61 (1939) 1252.
- 22 G.M. Brown and L.A. Walker, *Acta Crystallogr.*, 20 (1966) 220.